Stirling numbers of the second kind and Bell numbers for graphs

نویسندگان

  • Zsófia Kereskényi-Balogh
  • Gábor Nyul
چکیده

Stirling numbers of the second kind and Bell numbers for graphs were defined by Duncan and Peele in 2009. In a previous paper, one of us, jointly with Nyul, extended the known results for these special numbers by giving new identities, and provided a list of explicit expressions for Stirling numbers of the second kind and Bell numbers for particular graphs. In this work we introduce q-Stirling numbers of the second kind and q-Bell numbers for graphs, and provide a number of explicit examples. Connections are made to q-binomial coefficients and q-Fibonacci numbers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)

The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...

متن کامل

Stirling Numbers and Generalized Zagreb Indices

We show how generalized Zagreb indices $M_1^k(G)$ can be computed by using a simple graph polynomial and Stirling numbers of the second kind. In that way we explain and clarify the meaning of a triangle of numbers used to establish the same result in an earlier reference.

متن کامل

MIXED r-STIRLING NUMBERS OF THE SECOND KIND

The Stirling number of the second kind {k} counts the number of ways to partition a set of n labeled balls into k non-empty unlabeled cells. We extend this problem and give a new statement of the r-Stirling numbers of the second kind and r-Bell numbers. We also introduce the r-mixed Stirling number of the second kind and r-mixed Bell numbers. As an application of our results we obtain a formula...

متن کامل

ON (q; r; w)-STIRLING NUMBERS OF THE SECOND KIND

In this paper, we introduce a new generalization of the r-Stirling numbers of the second kind based on the q-numbers via an exponential generating function. We investigate their some properties and derive several relations among q-Bernoulli numbers and polynomials, and newly de…ned (q; r; w)Stirling numbers of the second kind. We also obtain q-Bernstein polynomials as a linear combination of (q...

متن کامل

Some Applications of the Fractional Poisson Probability Distribution

New physical and mathematical applications of recently invented fractional Poisson probability distribution have been presented. As a physical application, a new family of quantum coherent states have been introduced and studied. Mathematical applications are related to the number theory. We have developed fractional generalization of the Bell polynomials, the Bell numbers, and the Stirling num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2014